Weed Science in the Asian-Pacific Region

Editors
V.S. Rao • N.T. Yaduraju • N.R. Chandrasena • Gul Hassan • A.R. Sharma

In commemoration of
Silver Jubilee APWSS Conference, Hyderabad, India

Asian-Pacific Weed Science Society
Indian Society of Weed Science
Authors

Ms. Anuruddhika Abyesekera, Rice Research and Development Institute, Department of Agriculture, Batalagoda, North Western Province, Sri Lanka.

Dr. J. Adam, School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Perth, Western Australia, Australia.

Dr. Tahir H. Awan, International Rice Research Institute (IRRI), Los Baños, Philippines.

Dr. B.B. Baki, Formerly, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia. Currently, Department of Biological Sciences, Faculty of Science, Taif University, Taif, Saudi Arabia.

Dr. Aurora M. Baltazar, Professor, University of the Philippines Los Baños (UPLB), Los Baños, Philippines.

Dr. P.D. Champion, National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton 3251, New Zealand.

Dr. Nimal R. Chandrasena, Principal Ecologist, GHD Pty Ltd., Parramatta, NSW, 2050 Australia.

Dr. Bhagirath S. Chauhan, Principal Research Fellow, The Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Toowoomba, Queensland 4350, Australia.

Dr. Duong Van Chin, Director, Thanh Agricultural Research Center (DT ARC), An Giang Province, Vietnam.

Dr. Dharma Raj Dangol, Professor, Natural History Museum, Institute of Science and Technology, Tribhuvan University, Swayambhu, Kathmandu, Nepal.

Dr. Gul Hassan, Professor, Botany/Weed Science, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan.

Dr. Swarna Herath, Rice Research and Development Institute, Department of Agriculture, Batalagoda, North Western Province, Sri Lanka.

Dr. Hongjuan Huang, Associate Professor, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China.

Dr. ZhaoFeng Huang, Post-Doctoral Fellow, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, China.

Dr. A. Jalaluddin, School of Plant Biology, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia.

Dr. T.K. James, AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.

Dr. Stephen B. Johnson, Weed Ecologist, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW, 2800, Australia.

Dr. S.M. Rezaul Karim, Weed Scientist and Professor, Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh; Faculty of Agro Based Industry (FIAT), University Malaysia Kelantan (UMK), Campus Jeli, 17600 Jeli Kelantan, Malaysia.

Dr. Do-Soon Kim, Associate Professor, Department of Plant Science, Seoul National University, Korea Secretory, Asian-Pacific Weed Science Society.

Dr. Denny Kurniadi, Head Department of Agronomy Faculty of Agriculture, University of Padjajaran, Jl. Raya Jatinangor Km 21, Bandung, Indonesia.

Dr. Mar Mar Kyu, Emeritus Professor, Yezin Agricultural University, Yezin, Nay Pyi Taw, Myanmar.

Dr. In-Yong Lee, Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Korea.

Dr. A.A. Majrashi, Department of Biological Sciences, Faculty of Science, Taif University, Taif, Saudi Arabia.
Contents

Preface
Editors
Authors

1. Status of Weed Science in the United States of America
 V.S. Rao
 1

2. History and Status of Weed Science in New Zealand
 A. Rahman, T.K. James, A.I. Popay and P.D. Champion
 35

3. Status of Weed Science in Iran and Future Directions
 Eskandar Zand, Hamid Rahimian Mashhadi, Noushin Nezamabadi,
 Hamid Reza Sasanfar and Mehdi Minbashi Moeini
 67

4. Weeds and Weed Management in India: A Review
 A.N. Rao and B.S. Chauhan
 87

5. Weed Management in Australia: An Overview and Prognosis
 Nimal R. Chandrasena and Stephen B. Johnson
 119

6. Status of Weed Science in the Philippines
 Bhagirath S. Chauhan, Tahir H. Awan and Aurora M. Baltazar
 151

7. Status of Weed Science in Pakistan
 Gul Hassan and Khan Bahadar Marwat
 177

8. Weed Science in Malaysia: An Analysis
 M.S. Mispan, A. Jalaluddin, A.A. Majrashi and B.B. Baki
 197

9. Weeds and Weed Management in Agricultural and Natural Ecosystems:
 An Overview of the Sri Lankan Context
 Buddh Marambe, Anuruddha Abeysekera and Swarna Herath
 213

10. Current Status and Problems of Weed Management in Japan
 Hiroshi Matsumoto
 241

11. Weed Management in Israel – Challenges and Approaches
 Baruch Rubin and Maor Matzrafi
 253

12. Weed Management in Major Annual Crops in Vietnam
 Duong Van Chin
 271

13. Weed Research and Weed Science in Bangladesh
 S.M. Rezaul Karim
 281

14. Status of Weed Management in Thailand
 Chanya Maneechote
 291

15. Status of Weed Science in Nepal
 Dharma Raj Dangol
 305

16. Weed Science Advances in China
 Chaoxian Zhang, Zhafeng Huang, Hongjuan Huang and Shouhui Wei
 323

17. Status of Weed Science in Indonesia
 Soekisman Tjirosemito, Titiek Setyowati and Denny Kurniadi
 341

18. Current Status of Weed Science in Myanmar
 Mar Mar Kyu, Aye Aye Mar and Than Than Soe
 363

19. Status of Weed Science in Korea
 Do-Soon Kim, In-Yong Lee, Tae-Seon Park and Kee-Woong Park
 373

Author Index
Appendix
Weed Research and Weed Science in Bangladesh

S.M. Rezaul Karim

Weed Scientist and Professor, Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh; Faculty of Agro Based Industry (FLAT), University of Malaysia Kelantan (UMK), Campus Jeli, 17600 Jeli Kelantan, Malaysia (Email: rkarimbau@yahoo.com).

(Received 19 May 2015)

Abstract: Bangladesh is a tropical country with hot and rainy summers, and dry and comparatively cooler winters. The climatic conditions favour exuberant growth of diversified weed flora. About 350 species belonging to different plant families have been identified as weeds in cultivated fields. The three main parasitic weeds found infesting crops include *Striga densiflora*, *Orobanche* spp. and *Cuscuta reflexa*. On an average, 37.3% of crop produce is lost due to unrestricted growth of weeds in crop fields. In farmers’ fields, 13.1% of crop production is lost even after adopting traditional weed control practices. Over 2.5 million tons of food grains, valued at US$ 246.2 million, are lost annually due to weeds. The traditional manual weeding is mainly employed in farmers’ fields but herbicides are used in tea plantations and government farms. The recent introduction of *Parthenium hysterophorus* is a threat for human and animal health, production of upland crops, biodiversity and soil ecosystem of the country. Proper research on weeds and weed control began in the early 1960s. Currently, weed research is being done in all agricultural research institutes and universities. Power rotary weeder and power tiller-operated boom sprayer have been developed for weed control. Education on weed science is inadequate. The Weed Science Society of Bangladesh organizes conferences biennially and publishes a weed science journal annually.

Keywords: Boom sprayer, crop loss, education, major weeds, parasitic weeds, Parthenium infestation, power weeder, weed science education, weed science society.

Introduction

Bangladesh is an agriculture-based country with tropical climate characterized by hot and rainy summer, and a dry winter. December and January are the coldest months, with temperatures ranging between 14°C and 26°C. Temperatures during April-June, the warmest months, vary between 25°C and 36°C. Most places receive more than 1,525 mm of rain in a year. More than 80% of the rain occurs in summer (March-August) and the rest in winter (September-February). The humidity varies from the lowest of 73% in winter to the highest of 90% during monsoon (June-September). It is a low-lying country stretching in latitude between 20° 34’ and 26° 38’ N and between longitude 88° 01’ and 92° 41’ E [BBS 2011]. The country mostly comprises of floodplain areas with scattered hills at the eastern and northern parts. These conditions encourage the growth of different weeds in the country.

A total of 21 general soil types including floodplains, calcareous alluvium, black terai soils, acid basin clays, acid sulphate soils, peat soils, grey piedmont soils, etc. are recognized in Bangladesh. In most places, clay-loam and sandy-loam soils predominate. Rice, wheat, maize, potato, pulses and oilseeds are the major crops. Rice is the primary staple food and the most important crop. Jute and sugarcane are important cash crops. Tea is an important plantation crop.
in hilly areas. Agriculture is characterized by traditional farming using draft animals for land preparation although power tiller (pedestrian tractor) is being used increasingly in both dry and wet lands. About 18% of the total GDP is derived from agriculture [Trading Economics 2015].

Weed Research

The exact time when weed research started in Bangladesh remains obscure. However, a review suggested that research on weeds and weed management began in the early 1960s in the East Pakistan Agricultural Research Station, Tejgaon [Alim et al. 1962]. Chemical weed control was practiced regularly in the mid-1960s at the Tea Research Institute, Srimangal, Sylhet and tea plantations for controlling mainly the perennial weeds. In 1960, M. Ishaque worked on the control of *Celosia argentea* L. (cock's comb) in upland rice and maize by using 2,4-D. Active weed research programme began after the establishment of Bangladesh Rice Research Institute (BRRI), Bangladesh Agricultural Research Institute (BARII), Bangladesh Jute Research Institute (BJRI), Bangladesh Sugarcane Research Institute (BSRI) and Bangladesh Tea Research Institute (BTRI). Besides, several students worked on weed research since 1963 for master’s and doctoral degrees in different universities including East Pakistan Agricultural University (now Bangladesh Agricultural University), Dhaka University, Rajshahi University, Chittagong University, Jahangir Nagar University, etc.

Major Weeds of Different Crops

In Bangladesh, about 350 species have been recorded as weeds of cultivated fields. Most of them belonged to Poaceae, Cyperaceae, Leguminosae, Asteraceae, Solanaceae, Acanthaceae, Euphorbiaceae, Amaranthaceae and Scrophulariaceae families. In aquatic conditions, the members of the genera *Eichhornia*, *Potamogeton*, *Pistia* and *Monochoria* are the most common weeds in deep water paddy and fish ponds. Flowering and fruiting of most of the species occur during February to April. Many of the weed seeds germinate during May-October, peaking in June and July [Bangladesh 2015].

About 20% of the present weed flora have been recognized as naturalized exotic weeds. The notable species include *Argemone mexicana* L., *Alternanthera philoxeroides* (Mart.) Griseb., *Croton bonplandianum* Baill, *Nicotiana plumbaginifolia* Viv., *Lathyrus aphaca* L., *Celosia argentea* L. and *Vicia angustifolia* L. Uddin and Hasan [2003] identified 113 species including timber yielding plants, flowering and fruit-bearing plants, vegetables, avenue trees and weeds as invasive species in Bangladesh. These were introduced into the country deliberately, accidentally or through vectors. Important parasitic weeds causing damages to crops and trees are *Striga densiflora* (Benth.) Benth., *Orobanchce* spp., and *Cuscuta reflexa* Roxb. A vast area of sugarcane belt was badly affected by *Striga densiflora* during 1990-2000 and it caused shortage of millable cane to sugar mills. A list of predominant weeds and the extent of severity in a particular crop is presented in Table 1.
Allelopathic Rice

Allelopathic potential of 102 Bangladeshi rice varieties against four weed species was evaluated. These included cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), barnyard grass (Echinochloa crus-galli (L.) Beauv) and Jungle rice (Echinochloa colorea (L.) Link). The rice cultivar BR17 was found to be a allelopathic variety, causing 59% growth inhibition of the test weed species. The allelochemical isolated from it was identified as 9-hydroxy-4-megastigmen-3-one. This chemical inhibited root and shoot growth of these weed species at concentrations greater than 0.03 μM and 3 μM, respectively [Kato-Noguchi et al. 2009, 2010; Salam and Kato-Noguchi 2010].

Crop Losses Due to Weeds

Yield and quality of crops are lost to a great extent in Bangladesh. On an average, 37.3% of crop produce is lost if weeds are not controlled in the crop fields [Karim et al. 1998]. Crops valued at US$ 852.36 are estimated to have lost annually due to unrestricted growth of weeds. Pests of all types may cause a loss of 9.66 million tons of food grains valued at US$ 1,383 million annually if they are not controlled in crop fields. Production losses due to weeds have been estimated to be 32.2% in food crops, 41.3% in cereals, 31.9% in pulses, 40.8% in oilseeds, 34.2% in fibre crops and 40.3% in rice [Karim et al. 1998]. However, an average of 13.1% of crop produce is actually lost in farmers' fields even after adopting traditional weed control in Bangladesh [Mamun 1990].

Admixture of weed seeds is very common in crop production due to ineffective cleaning system, especially in the rural areas. The seeds of E. crusgalli, E. colorea, Parapholis incurva (L.) C.E. Hubbard and Cynodon dactylon (L.) Pers. lower the quality and taste of cooked rice [Islam et al. 2003]. Seeds of Chenopodium album L., Physalis heterophylla Nees., Dactyloctenium aegyptium (L) P. Beauv. and Amaranthus viridis L. commonly get mixed with wheat and when ground with wheat grain. This admixture gives bitter taste to 'chapati' (un-leavened flat bread; also called 'roti'). When seeds of Vicia sativa L. and Vicia hirsuta (L.) S.F. Gray. are cooked along with lentil and other pulses, the soup ('dal') becomes unpalatable. The seeds of Bonnaya brachiate Link & Ott., Leucas aspera Spreng. and C. album also get mixed with mustard seeds [Mamun 1990].

Parthenium

Recent introduction of Parthenium hysterophorus L. is a big problem infesting almost two-thirds of the country [Karim 2013; Illias et al. 2015]. Its infestation in Bangladesh has been detected first by Rezaul Karim, Department of Agronomy, Bangladesh Agricultural University along the roadside of Jessore-Khulna highway in 2008 [PaWN 2010]. This weed has been recorded in 19 crop fields including sugarcane, potato, tomato, chili, banana, onion, garlic, lentil, pea etc. Although the intensity of its infestation in the crop fields is not severe, it occupies most of the roadside areas.