HAPLOID INDUCTION OF KENAF (*HIBISCUS CANNABINUS* L.), OKRA (*ABELMOSCHUS ESCULENTUS* L.) AND SPRING ONION (*ALLIUM FISTULOSUM* L.) USING ANther, OVary AND OVule CULTURES

AHMED MAHMOOD IBRAHIM

UNIVERSITI MALAYSIA KELANTAN

DOCTOR OF PHILOSOPHY

2016
Haploid Induction of Kenaf (*Hibiscus cannabinus* L.), Okra (*Abelmoschus esculentus* L.) and Spring Onion (*Allium fistulosum* L.) Using Anther, Ovary and Ovule Cultures

by

Ahmed Mahmood Ibrahim

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Agro Based Industry

UNIVERSITI MALAYSIA KELANTAN

2016
THESIS DECLARATION

I hereby certify that the work embodied in this thesis is the result of the original research and has not been submitted for a higher degree to any other University or Institution.

☐ OPEN ACCESS
I agree that my thesis is to be made immediately available as hardcopy or on-line open access (full text).

☐ EMBARGOES
I agree that my thesis is to be made available as hardcopy or on-line (full text) for a period approved by the Post Graduate Committee.

☐ CONFIDENTIAL
(Contains confidential information under the office Official Secret Act 1972)*

☐ RESTRICTED
(Contains restricted information as specified by the organization where research was done) *

I acknowledge that Universiti Malaysia Kelantan reserves the right as follows.

1. The thesis is the property of Universiti Malaysia Kelantan.
2. The library of Universiti Malaysia Kelantan has the right to make copies for the purpose of research only.
3. The library has the right to make copies of the thesis for academic exchange.

__________________________ __________________________
SIGNATURE SIGNATURE OF SUPERVISOR

__ __________________________
IC/ PASSPORT NO. NAME OF SUPERVISOR

Date: Date
ACKNOWLEDGMENT

I am deeply grateful to Dr. Fatimah Binti Changgrok @ Kayat, Faculty of Agro Based Industry (FIAT), Universiti Malaysia Kelantan, my supervisor for her advice, support, patience, encouragement and guidance throughout my entire research and for critical reading of this thesis. I would also like to express my gratitude and thank to my co-supervisors Dr. Dwi Susanto, Dr. Mohammed Arifullah, FIAT, Universiti Malaysia Kelantan (UMK) and Dr. Pedram Kashiani, Universiti Putra Malaysia (UPM), for giving valuable suggestions and guidance in completion of my thesis.

Part of this work was supported by Dr. Dwi Susanto FRGS grant, R/FRGS/A03.00/00403A/002/2010/000042. I would like to thank to the Ministry of Higher Education, Malaysia for supporting my research through this grant.

I am indebted to the Faculty of Agro Based Industry, UMK for letting this happen by providing all necessary chemicals and equipments in the laboratory. I would also like to thank to all of the UMK laboratory assistants, especially to Mr. Suhaimi Omar and Mr. Muhammad Che Isa for their supports in doing the experiments.

I am particularly grateful to my loving mother, brothers, sisters, sons, daughters and grandsons for their supports. Special thanks to my wife for her constant moral supports, encouragement, patience and help during my studies abroad. A lot of thanks to my colleagues and friends, Mr. Izmer, Mr. Muslim, Mr. Vikram, Ms. Ilfah, Ms. Husna and Ms. Zeti of UMK, Jeli campus for their direct or indirect helps during this Ph.D study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESIS DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Importance of haploid
1.2 Kenaf
1.3 Okra
1.4 Spring onion
1.5 Justification of the study
1.6 Objectives of the present study
1.7 Scope of the study

CHAPTER 2 LITERATURE REVIEW

2.1 Haploid production
2.2 History of haploid plants
2.3 Androgenesis
2.4 Anther and microspore culture
2.5 Ovary and ovule culture
2.6 Haploid induction in onion
2.7 Factors affecting haploid production
 2.7.1 Genetic factor
 2.7.2 Condition of explant donor plant
 2.7.3 Developmental Stage of Pollen and Ovule
 2.7.4 Explant pretreatment
 2.7.4.1 Cold pretreatment
 2.7.4.2 Colchicine treatment
 2.7.5 Media components
 2.7.5.1 Sucrose
 2.7.5.2 Plant growth regulator
 2.7.5.3 Nitrogen
 2.7.6 Media components
 2.8 Regeneration media
2.9 Application of haploid in plant breeding

CHAPTER 3 MATERIALS AND METHODS
3.1 Research location and duration
3.2 Plant material
 3.2.1 Kenaf
 3.2.2 Okra
 3.2.3 Spring onion
3.3 Methods

3.3.1 Determination of anther and ovary developmental stage

3.3.1.1 Kenaf

3.3.1.2 Okra

3.3.1.3 Spring onion

3.3.2 Explant sterilization

3.4 Treatments.

3.4.1 Effect of flower initiation time and collection on callus induction of kenaf and okra

3.4.2 Effect of cold pretreatment on callus induction of kenaf and okra

3.4.3 Effect of colchicine pretreatment on callus induction of kenaf and okra

3.4.4 Effect of PGR combination and concentration on callus induction

3.4.4.1 Kenaf and okra

3.4.4.2 Spring onion

3.4.5 Effect of type of media on callus induction of kenaf and okra

3.4.6 Effect of sucrose concentration on callus induction of kenaf and okra

3.4.7 Effect of dark place period on callus induction of kenaf and okra

3.4.8 Effect of different types of PGR combination on callus subcultures of kenaf and okra

3.5 In vitro rooting and acclimatization in spring onion
CHAPTER 4 RESULTS

4.1 Haploid induction in kenaf and okra

4.1.1 Determination of the Suitable Developmental Stage

4.1.1.1 Kenaf

4.1.1.2 Okra

4.1.2 The effect of flowers initiation time and flower buds collection on callus induction

4.1.2.1 Kenaf

4.1.2.2 Okra

4.1.3 Effect of cold pretreatment on the callus induction

4.1.3.1 Kenaf

4.1.3.2 Okra

4.1.4 The effect of colchicine pretreatment on the callus induction

4.1.4.1 Kenaf

4.1.4.2 Okra

4.1.5 The effect of PGR on the callus induction

4.1.5.1 Kenaf

4.1.5.2 Okra

4.1.6 The effect of type of media on the callus induction

4.1.6.1 Kenaf
4.1.6.2 Okra

4.1.7 The effect of sucrose concentration on callus induction
4.1.7.1 Kenaf
4.1.7.2 Okra

4.1.8 The effect of dark place period on the callus induction
4.1.8.1 Kenaf
4.1.8.2 Okra

4.1.9 The effect of PGR combination and concentration on the callus development.
4.1.10 Ploidy test

4.2 Haploid induction in spring onion
4.2.1 Determination of developmental stage of anther and ovary
4.2.2 Haploid production in spring onion
4.2.3 Acclimatization and Ploidy Testing

CHAPTER 5 DISCUSSION

5.1 Determination of developmental stage of anther and ovary
5.2 The effect of flowers initiation time and flower buds collection on callus induction
5.3 The effect of cold pretreatment on callus induction
5.4 The effect of colchicine pretreatment on callus induction
5.5 The effect of PGR on anther and ovary culture on callus induction
5.6 The effect of type of media on anther and ovary cultures
5.7 The effect of sucrose concentration on callus induction 144
5.8 The effect of dark place on callus induction 146
5.9 The effect of PGR combination and concentration on the callus development 146
5.10 Haploid production in spring onion 147

CHAPTER 6 CONCLUSION AND FUTURE WORK
6.1 Conclusion 150
6.2 Future Work 151
REFERENCES 152
APPENDIX A 178
DATA ANALYSIS 178
APPENDIX B 199
LIST OF PUBLICATION 199
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>59</td>
</tr>
<tr>
<td>3.10</td>
<td>60</td>
</tr>
<tr>
<td>3.11</td>
<td>61</td>
</tr>
<tr>
<td>3.12</td>
<td>62</td>
</tr>
<tr>
<td>3.13</td>
<td>62</td>
</tr>
<tr>
<td>3.14</td>
<td>64</td>
</tr>
<tr>
<td>3.15</td>
<td>65</td>
</tr>
<tr>
<td>3.16</td>
<td>66</td>
</tr>
<tr>
<td>3.17</td>
<td>67</td>
</tr>
<tr>
<td>3.18</td>
<td>68</td>
</tr>
</tbody>
</table>

- Brief history of haploid plant
- Effect of initiated time and flower bud collection of three kenaf varieties
- Effect of initiated time and flower bud collection of okra
- Effect of cold pre-treatment on callus induction of three kenaf varieties
- Effect of cold pre-treatment on callus induction of okra
- Effect of colchicine pre-treatment on callus induction of kenaf
- Effect of colchicine pre-treatment on callus induction of okra
- Types of PGR combinations and concentration on callus induction of kenaf
- Types of PGR combinations and concentration on callus induction of okra
- Types of PGR combinations and concentration of callus and shoot induction of spring onion
- Type of media on callus induction of kenaf
- Type of media on callus induction of okra
- Effect of sucrose concentration on callus induction of kenaf
- Effect of sucrose concentration on callus induction of okra
- Effect of dark place period on callus induction of kenaf FH992
- Effect of dark place period on callus induction of kenaf V36
- Effect of dark place period on callus induction of kenaf KB6
- Effect of dark place period on callus induction of okra
- Effect of different types of PGR combination on callus subculture of kenaf and okra.
4.1 Characteristics of different flower explants (means ± standard deviation) in relation with flower bud age in kenaf

4.2 Characteristics of different flower explants (means ± standard deviation) in relation with flower bud age in okra

4.3 The percentage of callus formation of three kenaf varieties at different time intervals after the flower bud initiated

4.4 The percentage of callus formation of okra at different time intervals after the flower bud initiated

4.5 The effect of cold pretreatment period and different PGR combination on callus induction (percentage) of anther, ovary and ovule in kenaf

4.6 The effect of cold pretreatment period and different PGR combination on callus induction in okra.

4.7 The effect of colchicines pretreatment period on callus induction from anther, ovary and ovule of kenaf

4.8 The effect of colchicines pretreatment period on the callus induction in the anther and ovule culture of okra

4.9 The effect of PGR combination and concentration on callus induction of anther, ovary and ovule in kenaf

4.10 The effect of PGR combination and concentration on callus induction from anther, ovary and ovule of okra

4.11 The effect of media and PGR combination on callus induction of anther, ovary and ovule in kenaf

4.12 The effect of media and PGR combination on callus induction of anther, ovary and ovule in okra
4.13 The effect of sucrose concentration and PGR combination on callus induction of anther, ovary and ovule in kenaf
4.14 The effect of sucrose concentration and PGR combination on callus induction of anther, ovary and ovule in okra
4.15 The effect of dark period and PGR combination on callus and root induction of anther, ovary and ovule in kenaf FH992
4.16 The effect of dark period and PGR combination on callus and root induction of anther, ovary and ovule in kenaf V36
4.17 The effect of dark period and PGR combination on callus and root induction of anther, ovary and ovule in kenaf KB6
4.18 The effect of dark period and PGR combination on callus and root induction of anther, ovary and ovule in okra
4.19 The effect of PGR combination and concentration on the callus development.
4.20 Characteristics of different flower explants (means ± standard deviation) in relation with flower bud age in spring onion.
4.21 The effect of media on callus and shoot induction of flower, ovary and anther culture in spring onion
APPENDIX TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>ANOVA table of effect of different type of PGR on callus induction in ovule and anther of kenaf</td>
<td>178</td>
</tr>
<tr>
<td>A.2</td>
<td>Effect of different types of PGRs on callus induction in anther and ovary of kenaf FH992</td>
<td>179</td>
</tr>
<tr>
<td>A.3</td>
<td>Effect of different types of PGR on callus induction in ovule and anther of kenaf FH992 & V36</td>
<td>180</td>
</tr>
<tr>
<td>A.4</td>
<td>Effect of different types of PGR on callus induction in ovary and ovule of kenaf v36</td>
<td>181</td>
</tr>
<tr>
<td>A.5</td>
<td>Effect of different types of PGR on callus induction in anther and ovary of kenaf KB6</td>
<td>182</td>
</tr>
<tr>
<td>A.6</td>
<td>Effect of different types of PGR on callus induction in ovule of kenaf KB6 and anther of okra</td>
<td>183</td>
</tr>
<tr>
<td>A.7</td>
<td>ANOVA table of effect of different type of PGR on callus induction in ovule and anther of okra</td>
<td>184</td>
</tr>
<tr>
<td>A.8</td>
<td>Effect of different types of PGR on callus induction in ovule of kenaf KB6 and anther of okra</td>
<td>185</td>
</tr>
<tr>
<td>A.9</td>
<td>ANOVA table of effect PGR on callus and root induction of spring onion</td>
<td>186</td>
</tr>
<tr>
<td>A.10</td>
<td>Effect of PGR on callus and shoot induction in spring onion</td>
<td>186</td>
</tr>
<tr>
<td>A.11</td>
<td>Effect of different types of media on callus induction in anther, ovary and ovule of kenaf FH992</td>
<td>187</td>
</tr>
<tr>
<td>A.12</td>
<td>Effect of different types of media on callus induction in anther, ovary and ovule of kenaf V36</td>
<td>188</td>
</tr>
<tr>
<td>A.13</td>
<td>Effect of different types of media on callus induction in anther, ovary and ovule in kenaf KB6</td>
<td>189</td>
</tr>
<tr>
<td>A.14</td>
<td>Effect of different types of media on callus induction in anther, ovary and ovule in okra</td>
<td>190</td>
</tr>
</tbody>
</table>
A.15 Effect of different types of sucrose concentration on callus induction in anther, ovary and ovule of kenaf FH992

A.16 Effect of different types of sucrose concentration on callus induction in anther, ovary and ovule in kenaf V36

A.17 Effect of different types of sucrose concentration on callus induction in anther, ovary and ovule of kenaf KB6

A.18 Effect of different types of sucrose concentration on callus induction in anther, ovary and ovule of okra

A.19 Effect of dark place period on callus induction in anther of kenaf FH992

A.20 Effect of dark place period on root induction in anther of kenaf FH992

A.21 Effect of dark place period on callus and root induction in ovary of kenaf FH992

A.22 Effect of dark place period on callus and root induction in ovule of kenaf FH992
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Different sizes of kenaf flower buds used to determine the suitable stage of anther, ovary and ovule culture for callus induction</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Different sizes of flower buds of okra used to determine the suitable stage of anther, ovary and ovule culture.</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Plant material of spring onion, umbel 4 days before anthesis.</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Different size of flower buds in kenaf. (A1-A3) 6.0 mm length flower buds containing pollen mother cells, (B1-B3) 8.0 mm flower buds containing the tetrad microspore stage; (C1-C3) 10 mm flower buds and containing mature pollen grain, (D1-D3) 15 mm length flower buds, (E1-E3) 20 mm length flower buds, (F1-F3) 24 mm length flower buds with suitable stage for ovary and ovule cultures.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>(A) Development stages of pollen grain in Kenaf: (A) Anther during PMC stage, anther less than 6 mm long, (B) Anther during tetrad microspore stage with 8 mm long, (C) Anther during pollen grain stage with long more than 10 mm length</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Different sizes of flower bud of okra. (A) <10 mm long flower bud, the stage before meiosis 1; (B) 12.0 mm flower bud containing tetrad microspore stage; (C-F) 15 mm length flower buds containing mature pollen grain, (G) Tetrad microspore stage under light microscope, (H) Mature pollen grain under light microscope.</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>(A) Mature ovary of flower buds, (B) Mature ovary of flower buds with ovule after excised petals and sepals (C) Ovules after excised from ovary, (D) Isolated embryo sac from ovule of mature ovary of flower buds size (40.0 ± 2 mm)</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>Callus induction from anther (V36) due to different types of PGR combination, (A) Anther culture after 1 week culture, (B) callus induction after 8 weeks culture.</td>
<td>93</td>
</tr>
<tr>
<td>4.6</td>
<td>Callus induction after 8 weeks of culture in anther in MS media supplemented with different types of PGR combinations</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>High percentage of callus induction observed from the anther and ovary culture of kenaf variety FH992 on MS media supplemented</td>
<td>94</td>
</tr>
</tbody>
</table>
with 3.0 mg/l BAP + 2.0 mg/l NAA after 12 weeks

4.8 Friable callus produce in ovule of kenaf variety FH992 inoculated into MS media supplemented with 3.0 mg/l BAP + 2.0 mg/l NAA after 10 weeks

4.9 Greenish callus obtained from subcultue of calli of kenaf V36 anther cultured on MS media supplemented with 0.5 mg/l TDZ + 2.0 mg/l NAA after 10 weeks

4.10 Callus induction from anther of okra (A) anther culture during first week, (B) callus induction from anther after 8 weeks of inoculation

4.11 Callus induction from the ovules of okra (A) ovules inoculated into MS media supplemented with 3.0 mg/l BAP + 2.0 mg/l NAA during first week culture, (B) callus induction from ovules after 8 weeks of inoculation.

4.12 Callus induction in okra (A) Greenish callus from ovary inoculated into 0.5 mg/l TDZ + 2.0 mg/l NAA, (B) White greenish callus after 16 weeks of subcultured into 0.5 mg/l TDZ + 0.5 mg/l NAA, (C) White callus after 20 weeks of subcultured into 0.5 mg/l TDZ + 0.2 mg/l NAA.

4.13 Yellowish friable calli obtained after 12 weeks of culture from anther in MS media supplemented with 3.0 mg/l BAP + 2.0 mg/l 2,4-D

4.14 Effect of dark place period on callus and root induction in kenaf HF992, (A) During 0 days darkness High callus induction but without root induction, (B) During 7 days darkness, high callus induction with rare root induction, (C) During 14 days darkness, high callus induction with about 40-50% root induction, (D) During 28 days darkness, high callus and root induction.

4.15 Ovary culture in dark place (28 days), callus and root induction of kenaf variety FH992 in MS media supplemented with 3.0 mg/l BAP + 2.0 mg/l NAA after 8 weeks.

4.16 Different types of callus produced from the anther culture of kenaf variety FH992 under different combination of plant growth regular (A) 0.5 mg/l TDZ + 2.0 mg/l NAA, (B) 3.0 mg/l BAP + 2.0 mg/l NAA, (C) 5.0 mg/l 2iP + 2.0 mg/l NAA

4.17 Greenish callus observed after the second callus subculture of the
V36 variety

4.18 Flow cytometry profiles showing the nuclear DNA content of calli produced from the ovule of kenaf (A) as compared to its diploid plant (B).

4.19 Flow cytometry profiles showing the nuclear DNA content of calli produced from the ovule of okra (A) as compared to its diploid plant (B).

4.20 Plant material of spring onion, (A - E) different size of flowers (1.5-5 mm), (F) Tetrad microspore stage and flower size 2.0 ± 0.5 mm, (G) Ovary and anthers from flower size 4.0 to 5.0 mm (H) Ovule from flower size 4.0 to 5.0 mm

4.21 (A) Calli produced from the ovary cultures of spring onion after 90 days in BDS media, (B) Shoot regeneration observed from the ovary cultures after 60 days of callus induction in BDS media.

4.22 (A) Callus induction from ovule of spring onion after 90 days, (B) shoot induction after 60 days of callus induction.

4.23 (A) Shoot regeneration observed from callus of the ovule culture (B) shoot development observed after 150 days of culture in spring onion

4.24 Callus and shoot regeneration from the septal nectaries region of the flower culture (discarded) in spring onion

4.25 (A) (A) In vitro rooting of spring onion, half strength MS media supplemented with 1.0 mg/l IBA + 1.0 mg/l KIN and added with 0.5% activated charcoal (B) Tap water only to decrease plant hyperhydricity.

4.26 (A) Plantlets of spring onion in plastic pots with plastic cap for 2 weeks, the gradual reduction of the relative humidity to enhance the survival, (B) Plantlets in plastic pots containing peat moss after 6-7 weeks.

4.27 Flow cytometry profiles showing the nuclear DNA content of the spring onion plantlets (A) Single peak at around 1.000 PI-A (B) Single peak at around 2.000 PI-A (P1)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MS</td>
<td>Murashigae and Skoog</td>
</tr>
<tr>
<td>BAP</td>
<td>N6-benzyladenine</td>
</tr>
<tr>
<td>GA</td>
<td>Gibberellic acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>IAA</td>
<td>Indoleacetic acid</td>
</tr>
<tr>
<td>IBA</td>
<td>Indolebutyric acid</td>
</tr>
<tr>
<td>KIN</td>
<td>Kinetin</td>
</tr>
<tr>
<td>NAA</td>
<td>Napthaleneacetic acid</td>
</tr>
<tr>
<td>Na OH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NO</td>
<td>Number</td>
</tr>
<tr>
<td>PGRs</td>
<td>Plant growth regulators</td>
</tr>
<tr>
<td>2-iP</td>
<td>N6-(2-Isopentenyl) adenine</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2, 4-Dichlorophenoxyacetic acid</td>
</tr>
<tr>
<td>TDZ</td>
<td>Thidiazuron</td>
</tr>
<tr>
<td>ZTN</td>
<td>Zeatin</td>
</tr>
</tbody>
</table>
PMC Pollen mother cell
X A change in the relative performance of a ‘< character » of two or more genotypes measured in two or more environments.
DH Double haploid
RAPD Random Amplified Polymorphic DNA
MS Murashige and Skoog medium
N6 CHU N6 Basal Medium
MN6 Modified N6 medium
B5 Gamborg Medium
BDS Modified B5
Penghasilan tumbuhan haploid daripada kenaf (Hibiscus cannabinus L.), bendi (Abelmoschus esculentus L.) dan daun bawang (Allium fistulosum L.) menggunakan kultur anter, ovari dan ovul

ABSTRAK

Penghasilan tumbuhan haploid daripada kultur anter dan ovari yang diikuti oleh kromosom ganda dua boleh menghasilkan baris induk homozigot dalam masa yang lebih singkat berbanding dengan penghasilan baris biakbaka dalam (inbred) dengan kaedah konvensional melalui cacauan sendiri berulang-ulang. Tesis ini menerangkan kajian yang dijalankan untuk mengkaji potensi kultur anter, mikrospora (debunga), ovari dan ovul daun, kenaf (Hibiscus cannabinus L.), bendi (Abelmoschus esculentus L.) dan bawang (Allium fistulosum L.) untuk penghasilan tumbuhan haploid. Anter, ovari dan ovul diambil dariedan bunga pada peringkat berbeza dan kebolehan untuk menghasilkan kalus haploid atau embriogenesis somatik dan seterusnya menjana semula kepada tumbuhan haploid dikaji. Untuk tujuan tersebut, beberapa faktor seperti masa permulaan bunga dan pengumpulan tunas bunga, jenis media, kepekatan dan kombinasi hormon, kepekatan sukrosa dan keadaan kultur telah dikaji. Tunas bunga dengan ukuran berbeza telah diseksi untuk menentukan tahap perkembangan sebelum digunakan dalam pelbagai prarawatan (sejuk dan kolkisina) dan kemudian anter, mikrospora, ovari dan ovul telah dikulturkan ke dalam kombinasi hormon yang berbeza (NAA, IAA, 2,4-D, KIN, BAP, IBA, ZTN, 2iP dan TDZ) dan berlainsen kepekatan. Kultur ini telah diinkubasi dalam keadaan gelap dan terang. Peringkat perkembangan mikrospora terbaik untuk penginduksian kalus telah diperolehi daripada 8 mm tunas bunga bagi kenaf dan 12 mm tunas bunga bagi bendi dari kemunculan kelompok bunga pertama. Manakala peringkat perkembangan terbaik bagi ovari dan ovul adalah satu atau dua hari sebelum anthesis bagi kenaf dan bendi, dan 3-5 mm tunas bunga bagi daun bawang. Kalus haploid dan akar dapat dihasilkan daripada anter, ovari dan ovul bagi kenaf dan bendi. Penjanaan semula planlet haploid boleh diperolehi oleh daun bawang menggunakan kultur bunga dan ovari yang telah disahkan oleh kajian ploidi menggunakan aliran sitometri. Hasil kajian menunjukkan kesar masa permulaan bunga adalah antara fakor penting bagi kultur anter dan ovari. Tiada perbezaan yang signifikan dalam peratusan penginduksian kalus bagi prarawatan sejuk, 0.5 mg/l TDZ atau 3.0 mg/l BAP dicampur dengan 2.0 mg/l NAA menghasilkan peratusan penginduksian kalus yang tertinggi (95%). Antara tiga media penginduksian, media MS adalah media yang terbaik dengan purata penginduksian kalus sebanyak 95%. Perbezaan yang signifikan telah diperhatikan dalam penginduksian kalus dengan kepekatan sukrosa sebanyak 3%. Penyimpanan di dalam tempat gelap selama 28 hari menghasilkan peratusan penginduksian kalus dan akar paling tinggi (92.5%). Tiada pucuk dapat dihasilkan daripada kenaf dan bendi walaupun selepas beberapa rawatan dan subkultur lanjutan. Tesis ini mewujudkan titik perlu untuk penelitian bagi tiga tanaman ini. Protokol yang dihasilkan untuk penghasilan planlet haploid dalam daun bawang boleh membantu dalam program pembiakan bagi peningkatan trait genetik daripada daun bawang.
ABSTRACT

The production of haploid plants by anther and ovary cultures followed by chromosome doubling can produce homozygous parent lines in a relatively shorter time compared to the production of inbred lines by conventional method through repeated selfings. The thesis describes the studies undertaken to investigate the potential of anther, microspores (pollens), ovary and ovule cultures of kenaf (Hibiscus cannabinus L.), okra (Abelmoschus esculentus L.) and spring onion (Allium fistulosum L.) for the production of haploid plants. Anther, ovary and ovule were excised from flower buds at different stages. The ability to produce haploid callus or somatic embryogenesis and thereby regenerate into haploid plants were investigated. Several factors such as flower bud initiation time, type of media, plant growth regulator (PGR) combinations and concentration, sucrose concentration and dark periods have been evaluated. The flower buds of different sizes were dissected to determine their stage of development before subjected to various pretreatments (cold and colchicines) and then the anthers, microspores, ovaries and ovules were cultured on different PGR combinations (NAA, IAA, 2,4-D, KIN, BAP, IBA, ZTN, 2iP and TDZ) and concentrations. The cultures were incubated in both dark and light condition. The suitable developmental stage of microspore for callus induction was obtained from 8 mm length of flower buds in kenaf and 12 mm length of flower bud in okra from the first batch flower emergence and 2 mm length flower bud in spring onion. While the suitable developmental stage for ovaries and ovules were one or two days before anthesis of kenaf and okra and and 3-5 mm flower bud in spring onion. Haploid calli and root were produced from the anther, ovary and ovule of kenaf and okra. Regeneration of haploid plantlets could be obtained in spring onion using flower and ovary cultures which were confirmed by ploidy test using a flow cytometry. The results of the study revealed that the effect of flower bud initiation time was an important factor in anther and ovary cultures. There were no significant difference in percentage of callus induction on cold pre treatment, 0.5 mg/l TDZ or 3.0 mg/l BAP combined with 2.0 mg/l NAA gave highest percentage (95%) of callus induction. Among the three callus induction media, MS medium was the most responsive medium with an average of 95% callus induction. A significant differences were observed at 3% of sucrose concentration on callus induction. Incubation in a dark place for 28 days in dark place gave highest percentage (92.5%) of callus and root induction. No shoot was developed from kenaf and okra despite several treatments and further sub-culturing. The study can be starting point for the improvement of the three crops. The protocols developed for the production of haploid plantlets in spring onion helpful in a breeding program for the improvement of genetic traits of spring onion.
1.1 Importance of haploid

Haploids are sporophytic plants that contain the gametic chromosome number. Haploids arise from diploid species containing a single genome are described as monoploids. Haploids derived from polyploid species, containing two or more genomes are called polyhaploids. Haploid plants become doubled haploids (DHs) as a result of chromosome doubling. The doubled-haploid methodology offers several advantages to plant improvement programs as it can facilitate a rapid approach to homozygosity.

Haploid plants are of great interest to geneticists and plant breeders as they offer the opportunity to examine genes in the hemizygous condition and facilitate identification of new mutations. Plant breeders value haploids as a source of homozygosity following chromosome doubling from which efficient selection of both quantitative and qualitative traits can be accomplished. Since haploid plants carry only one set of alleles at each locus, homozygous and homogeneous lines can be achieved upon doubling. This method can be applied for evaluation of qualitative and quantitative traits, avoiding the masking of recessive genes. The evaluation of possible environment x genotype interactions, and identification of superior parental combinations can also be done properly.
Other benefits include detection of genetic linkages; determination of recombination values (Snape, 1988) and molecular genome identification.

The production of F1 hybrids is considered as one of the main goals in crops breeding program. The main restriction to achieve it is the length of time needed to produce homozygous parental materials. The most time-consuming and work-intensive method through the conventional breeding process is troublesome as it requires manual self-pollination to generate pure homozygous parent lines. Eight or more generations of inbreeding are needed to establish homozygous lines that can be applied in hybrid production. This process can be enhanced by using doubled haploid (DH) lines as components of hybrid cultivars.

1.2 Kenaf

Kenaf (*Hibiscus cannabinus* L.) belongs to the Malvaceae family, under the section Furcaria that is closely related to cotton, okra, hollyhock and roselle. Kenaf is an annual fiber crop cultivated for numerous uses such as for paper pulp, fabrics, textile, building materials, biocomposites, bedding material, oil absorbents and many more (Andrea & Efthimia, 2013). Nowadays, it has been cultivated in more than 20 countries worldwide. However, this plant is considered as new in Malaysia and is cultivated to replace tobacco plantation, which is no longer supported by the government (Roslan *et al.*, 2011). Kenaf can grow fast and achieves 5 to 6 m in height and 2.5 to 3.5 cm in diameter.
within 5 to 6 months. Kenaf has a unique combination of long bast and short core fibers which makes it suitable for a range of paper and cardboard products. Fifty five percentage of dried kenaf stalks are used to make paper while the waste from the process can be utilized for fertilizer and feed binder. Home gardens grown kenaf usually have more tender upper leaves and shoots which are eaten either as raw or cooked food (Gordon 1994).

The National Kenaf and Tobacco Board (LKTN) contrive the development of kenaf cultivation in order to replace the current tobacco cultivation in Kelantan. Moreover, the Malaysian government also emphasizes in diversifying and commercializing the downstream kenaf based industries including the pulp and paper industry in cooperation with the private sectors. However, the cultivation of kenaf is not attractive to the farmers because the income from kenaf yields is lower than that of tobacco. The low profit gained from kenaf compared to tobacco makes kenaf unpopular among the farmers. The low yields of kenaf is due to lack of superior characteristics such as small diameter stem, short plant height and early flowering resulting in less fiber yield. Therefore, development of superior variety with better agronomic traits is highly needed. The establishment of protocols for haploid and double haploid lines could accelerate the breeding program for the development of the improved kenaf cultivar.