PREVALENCE OF SALMONELLA, ESCHERICHIA COLI O157:H7, LISTERIA MONOCYTOGENES AND STAPHYLOCOCCUS AUREUS IN RAW BEEF IN KELANTAN

NIK NUR FAZLINA BINTI NIK MOHD FAUZI

UNIVERSITI MALAYSIA KELANTAN

MASTER OF SCIENCE

2014
Prevalence of *Salmonella*, *Escherichia coli* O157:H7, *Listeria monocytogenes* and *Staphylococcus aureus* in Raw Beef in Kelantan

by

Nik Nur Fazlina binti Nik Mohd Fauzi

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Veterinary Medicine
UNIVERSITI MALAYSIA KELANTAN

2014
THESIS DECLARATION

I hereby certify that the work embodied in this thesis is the result of the original research and has not been submitted for a higher degree to any other University or Institution.

☐ OPEN ACCESS I agree that my thesis is to be made immediately available as hardcopy or on-line open access (full text).

☐ EMBARGOES I agree that my thesis is to be made available as hardcopy or on-line open access (full text) for a period approved by the Post Graduate Committee.
Dated from ____________ until ______________

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*

I acknowledge that Universiti Malaysia Kelantan reserves the right as follows.

1. The thesis is the property of University Malaysia Kelantan.
2. The library of Universiti Malaysia Kelantan has the right to make copies for the purpose of research only.
3. The library has the right to make copies of the thesis for academic exchange.

_________________________________ ___________________________________
SIGNATURE SIGNATURE OF SUPERVISOR

I/C/PASSPORT NO. NAME OF SUPERVISOR

Date: ___________________________ Date: ___________________________
ACKNOWLEDGEMENT

BISMILLAHIRRAHMANIRRAHIM…

In the name of Allah Subhanahu Wa Ta’ala, the Most Gracious and Most Merciful. An utmost gratitude goes to Allah, with His blessed and strength given to me, I’m able to complete this dissertation after going through two years of challenging and stressful period. The completion of this thesis would not have been possible without the guidance and support of many people. I would like to take this opportunity to express my appreciation to their efforts and kindness.

I would first like to express my deep and sincere appreciation to my supervisor, Assoc. Prof. Dr. Mohd Mokhtar Arshad for his wide knowledge and superb ideas have been great value in this study. His understanding, encouraging, advices and supports have inspired me to finish my research and thesis successfully. Deepest thanks to my co-supervisor, Prof. Dr. Imad Ibrahim Ali Al-Sultan who kindly provided me with his knowledge, guidance and advice in completion of this thesis. I also would like a special thanks to my former supervisor, Dr. Jasbir Singh for his idea carrying out this study.

A million thanks to Department of Veterinary Services Kota Bharu for approval our co-operation with Division of Veterinary Enforcement and Division of Bacteriology Laboratory in collecting samples, training and guidance throughout the study. Sincere thanks to all lab assistant of Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, who is very helpful to provide equipments and apparatus required during the study.

Deeply appreciated and thanks goes to my truly friends especially Qayyum, Ziela, Izzah, Ain, Sis Azwani, Sis Zalina and Sis Zetty for their willingness to help, brilliant ideas, advice and great supports from beginning until the end of the study. Our friendships will remain in my memory forever and ever. Last but not least, my precious appreciation goes to my beloved family for their prayer, constant patience and moral supports especially to my beloved mother, Che Rahmah Che Salleh, father, Nik Mohd Fauzi Wan Ismail and siblings. I could not ask for a better one as without them, my study would have never been possible.

ALHAMDULILLAH…
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESIS DECLARATION</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Overview of Foodborne Diseases | 1 |
1.2 Problem Statements | 6 |
1.3 Hypothesis of the Study | 6 |
1.4 Significant of the Study | 7 |
1.5 Objectives of the Study | 8 |

CHAPTER 2 LITERATURE REVIEW

2.1 Foodborne Diseases | 9 |
2.1.1 Foodborne Diseases in Malaysia | 10 |
2.2 Microbial Response to Stress | 13 |
2.3 Foodborne Bacteria and Food Poisoning Associated with Beef | 15 |
2.3.1 Salmonella | 16 |
2.3.2 *Escherichia coli* O157:H7 | 20 |
2.3.3 Listeria monocytogenes | 28 |
2.3.4 *Staphylococcus aureus* | 33 |
2.4 Meat Spoilage | 36 |
2.4.1 Meat Contamination | 36 |
2.4.2 Factors Affect Microbial Growth in Meat | 37 |
2.4.3 Meat Handling | 39 |
2.4.4 Preservation of Fresh Meat 39
2.5 Antimicrobial Agents 42
2.6 Antibiotic Susceptibility 43
2.6.1 Factors Influencing Antibacterial Activity 45
2.6.2 Emergence and Spread of Antibiotic Resistant 46
2.6.3 Resistance Mechanisms 47
2.7 Uses of Antibiotics in Livestock Production 48

CHAPTER 3 RESEARCH METHODOLOGY
3.1 Study Area and Collection of Samples 50
3.2 Preparation of Sample 52
3.3 Detection of Foodborne Bacteria 52
3.4 Bacteriological Analysis of Raw Beef 53
3.4.1 Total Plate Count 53
3.4.2 Coliform Count 54
3.4.2.1 Confirmation Test for Coliform 55
3.5 Isolation of Salmonella 56
3.5.1 Identification of Salmonella 56
3.5.2 Salmonella Agglutination Test 57
3.6 Isolation of Escherichia coli O157:H7 57
3.6.1 Identification of Escherichia coli O157:H7 58
3.7 Isolation of Listeria monocytogenes 59
3.7.1 Identification of Listeria monocytogenes 60
3.8 Isolation of Staphylococcus aureus 60
3.8.1 Identification of Staphylococcus aureus 60
3.9 Antibiotic Susceptibility Test 61
3.10 Data Analysis 63
3.10.1 Coliform Count 63
3.10.2 Total Plate Count 64
3.10.3 Foodborne Bacteria 64
3.10.4 Multiple Antibiotic Resistance Index Analysis 65
3.11 Statistical Analysis 65
3.12 Limitations

CHAPTER 4 RESULT AND DISCUSSION

4.1 Bacteriological Contamination of Raw Beef
4.2 Foodborne Bacteria in Raw Beef
 4.2.1 Salmonella species
 4.2.2 Escherichia coli O157:H7
 4.2.3 Listeria monocytogenes
 4.2.4 Staphylococcus aureus
4.3 Antibiotic Resistance Pattern of Isolated Foodborne Bacteria

CHAPTER 5 CONCLUSION

5.1 Conclusion
5.2 Food Safety Recommendation
5.3 Recommendations for Future Research

REFERENCES

APPENDIX A
APPENDIX B
APPENDIX C
LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Food poisoning outbreaks in Malaysia from 1 January to 2 February 2008</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Response mechanisms in microorganisms</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Salmonella serotypes commonly causing food poisoning and Infection</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Methods of food preservation</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Number of raw beef samples collected from government abattoirs, backyard slaughterhouses and retail stores in Kelantan</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Antibiotics used for antibiotic susceptibility test</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Number and percentage of raw beef sample from government abattoirs and retail stores in Kelantan with TPC and coliform count above acceptable limit</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Prevalence of Salmonella-positive sample according to different types of premises</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Number and percentage of Salmonella serotype isolated from raw beef at different types of premises</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Prevalence of E. coli-positive sample according to different types of premises</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Prevalence of L. monocytogenes-positive sample according to different types of premises</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Prevalence of S. aureus-positive sample according to different types of premises</td>
<td>89</td>
</tr>
<tr>
<td>4.7</td>
<td>Percentage of Salmonella isolates from raw beef resistant to antibiotics from different types of premises</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>Antibiotic resistance pattern of Salmonella serotypes from raw beef from different types of premises</td>
<td>94</td>
</tr>
<tr>
<td>4.9</td>
<td>Multiple antibiotic resistance (MAR) index analysis of Salmonella Albany</td>
<td>95</td>
</tr>
</tbody>
</table>
4.10 Antibiotic resistance of *E. coli* isolated from raw beef from retail store and backyard slaughterhouse in Kelantan

4.11 Antibiotic resistance of *S. aureus* isolated from raw beef from retail store and backyard slaughterhouse in Kelantan
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sites of action of bacterial to antimicrobial agents.</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>Sites of action and potential mechanisms of bacterial resistance to antimicrobial agents.</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Path of build up resistance strains of bacteria in the animals.</td>
<td>49</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC</td>
<td>Amoxycillin-clavulanate</td>
</tr>
<tr>
<td>AMP</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>(a_w)</td>
<td>Water activity</td>
</tr>
<tr>
<td>BAM</td>
<td>Bacteriological Analytical Manual</td>
</tr>
<tr>
<td>BCIG</td>
<td>5-bromo-4-chloro-3-indolyl- (b)-D-glucuronide</td>
</tr>
<tr>
<td>C</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>CIP</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>CLSI (formally NCCLS)</td>
<td>Clinical and Laboratory Standards Institute</td>
</tr>
<tr>
<td>CN</td>
<td>Gentamycin</td>
</tr>
<tr>
<td>CRO</td>
<td>Cefotaxime</td>
</tr>
<tr>
<td>CT-SMAC</td>
<td>Cefixime and tellurite sorbitol MacConkey agar</td>
</tr>
<tr>
<td>DA</td>
<td>Clindamycin</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>E</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FOX</td>
<td>Cefoxitin</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>Water</td>
</tr>
<tr>
<td>HUS</td>
<td>Hemolytic uremic syndrome</td>
</tr>
<tr>
<td>K</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>MAR</td>
<td>Multiple Antibiotic Resistance</td>
</tr>
<tr>
<td>MDR</td>
<td>Multi Drug Resistance</td>
</tr>
<tr>
<td>mw</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>mpn</td>
<td>Most probable number</td>
</tr>
<tr>
<td>NA</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NCCLS</td>
<td>National Committee for Clinical Laboratory Standards</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
</tbody>
</table>
OX Oxacillin
P Penicillin G
PCR Polymerase chain reaction
PFGE Pulsed field gel electrophoresis
pH Measure of the acidity of a solution in terms of the activity of hydrogen (H+)
RD Rifampin
RNA Ribonucleic acid
S Streptomycin
spp. Species
STEC Shiga toxin-producing *Escherichia coli*
S3 Sulphonamides
SXT Trimethoprim-sulfamethoxazole
TE Tetracycline
TPC Total plate count
UK United Kingdom
US United States
vs Versus
W5 Trimethoprim
XLT-4 Xylose Lactose Tergitol™ 4
LIST OF SYMBOLS

% Percent
°C Degree Celsius
° Degree
β Beta
® Copyright
™ Trademark
g Gram
h Hour
L Liter
ml Milliliter
mg Milligram
mm Millimeter
min Minute
n Sample size
ng Nanogram
r.p.m. Revolutions per minute
sec Second
U Unit
V Volt
Kelaziman Salmonella, Escherichia coli O157:H7, Listeria monocytogenes dan Staphylococcus aureus dalam Daging Lembu Mentah di Kelantan

ABSTRAK

Penyakit bawaan makanan disebabkan oleh Salmonella, Escherichia coli O157: H7, Listeria monocytogenes dan Staphylococcus aureus telah dikaitkan dengan pengambilan daging lembu kurang masak dalam makanan telah dilaporkan di seluruh dunia. Di Kelantan, penyembelihan lembu di rumah sembelih persendirian biasa diamalkan kerana rumah sembelih kerajaan berdaftar adalah terhad. Objektif kajian ini adalah untuk; i) Menentukan kualiti bakteriologi pada daging lembu mentah, ii) Menentukan kelaziman bakteria bawaan makanan (Salmonella, E. coli O157: H7, L. monocytogenes dan S. aureus) dalam daging lembu mentah dari kedai, rumah sembelih persendirian dan rumah sembelih kerajaan, iii) Mengenalpasti corak daya tahan bakteria terhadap antibiotik. Sampel daging lembu mentah dikumpulkan dari pelbagai premis berdasarkan kepada kiraan bakteria plat (TPC), kiraan koliform, analisis Salmonella, E. coli O157: H7, L. monocytogenes dan S. aureus. Pencilan bakteria seterusnya melalui ujian antibiotik dengan menggunakan kaedah Disc diffusion (Kirby-Bauer). Sebelas daripada 23 (47.8%) daging lembu mentah dari kedai tepi jalan mempunyai TPC melebihi had yang dibenarkan (<1.0 x 10^6 cfu/g). Manakala tiada daripada 19 (0%) daging lembu dari rumah sembelih kerajaan. Lapan belas daripada 23 (78.3%) sampel daging lembu dari kedai tepi jalan mempunyai kiraan koliform melebihi had yang dibenarkan (1000 mpn/g). Manakala satu daripada 19 (5.3%) daging lembu dari rumah sembelih kerajaan mempunyai kiraan koliform melebihi had yang dibenarkan. Salmonella spp. dikesan 44.0% (11/25), 16.7% (2/12), 5.3% (1/19) dalam daging lembu mentah dari kedai tepi jalan, rumah sembelih persendirian dan rumah sembelih kerajaan masing-masing. Daripada 14 Salmonella dipencil, yang paling tinggi ialah S. Mbandaka (5/14), S. Weltevreden (5/14) diikuti S. Albany (4/14).Tiada E. coli O157: H7 dan L. monocytogenes dikesan dalam 25 sampel daging lembu dari kedai tepi jalan, 12 rumah sembelih persendirian dan 19 rumah sembelih kerajaan. S. aureus dikesan 32% (8/25), 33.3% (4/12) dalam daging lembu dari kedai tepi jalan dan rumah sembelih persendirian masing-masing. Daripada 14 pencilan Salmonella, 21% (3/14) adalah sensitif kepada semua antibiotik yang diuji, 36% (5/14) tahan kepada satu kelas antibiotik, 14% (2/14) tahan kepada 2 kelas antibiotik dan 29% (4/14) adalah MDR. Analisis MAR indeks menunjukkan 2 pencilan S. Albany mempunyai nilai MAR indeks tertinggi (1.00) diikuti 2 pencilan S. Albany yang lain (0.69). Kesimpulannya, kajian ini menunjukkan bahawa pengguna di Kelantan mungkin terdedah kepada kualiti bakteriologi dan tahap keselamatan daging lembu mentah yang rendah dari kedai tepi jalan dan mengandungi Salmonella yang tahan rintangan antibiotik. Keputusan yang dibentangkan dalam kajian ini dapat membantu agensi yang berkaitan untuk dijadikan garis panduan bagi meningkatkan kualiti bakteriologi dan keselamatan daging lembu mentah rancit di Kelantan. Ia juga boleh dijadikan sebagai asas perbandingan untuk kajian pada masa hadapan.
Prevalence of *Salmonella, Escherichia coli* O157:H7, *Listeria monocytogenes* and *Staphylococcus aureus* in Raw Beef in Kelantan

ABSTRACT

Foodborne illness caused by *Salmonella, Escherichia coli* O157:H7, *Listeria monocytogenes* and *Staphylococcus aureus* associated with the consumption of undercooked beef or foods containing beef have been reported worldwide. In Kelantan, slaughtering of cattle in backyard slaughterhouse is common practice because there are limited numbers of government abattoir. The objectives of this study were to; i) Determine the bacteriological quality of raw beef, ii) Determine the prevalence of foodborne bacteria (*Salmonella, E. coli* O157:H7, *L. monocytogenes* and *S. aureus*) in raw beef from retail stores, backyard slaughterhouses and government abattoirs, iii) Determine the antibiotic resistant pattern of the bacteria. Raw beef samples were collected from different types of premises and subjected to TPC, coliform count and analysis for *Salmonella, E. coli* O157:H7, *L. monocytogenes* and *S. aureus*. The bacteria were then subjected to antibiotic susceptibility test by using the standard disc diffusion method (Kirby-Bauer). Eleven of 23 (47.8%) raw beef from retail stores had TPC above the acceptable limit (<1.0 x 10^6 cfu/g). Whereas none of 19 (0%) raw beef from government abattoir had TPC above the acceptable limit. Eighteen of 23 (78.3%) beef samples from retail store had coliform count above the acceptable limit (1000 mpn/g). Whereas one of 19 (5.3%) raw beef from government abattoir had coliform count above the acceptable limit. *Salmonella* spp. was detected in 44.0% (11/25), 16.7% (2/12), 5.3% (1/19) of raw beef from retail stores, backyard slaughterhouses and government abattoir respectively. Of 14 *Salmonella* isolated, the most common were *S. Mbandaka* (5/14), *S. Weltevreden* (5/14) followed by *S. Albany* (4/14). No *E.coli* O157:H7 and *L. monocytogenes* were detected in raw beef from all different types of premises. *S. aureus* was detected in 32% (8/25), 33.3% (4/12) of raw beef from retail stores and backyard slaughterhouses respectively. Of 14 isolates of *Salmonella*, 21% (3/14) were susceptible to all antibiotics tested, 36% (5/14) presented a single type of resistance, 14% (2/14) were resistance to 2 classes of antibiotics and 29% (4/14) were MDR. The MAR index analysis indicated that 2 isolates of *S. Albany* had highest MAR index value (1.00) followed by another 2 isolates of *S. Albany* (0.69). In conclusion the results of this study indicate that consumers in Kelantan may access to raw beef from retail stores that are of low bacteriological quality and safety level and contain MDR *Salmonella*. The results presented in this study can help relevant agencies to establish guidelines to improve the bacteriological quality and safety of retail raw beef in Kelantan. It can also serve as a baseline information for future studies.